
1

Examining Mono-Polarity Bit Sequences in the Controller Area

Network Specification

Steve C. Talbot

Illinois Institute of Technology

Chicago, Illinois 60616, USA
talbste@iit.edu

Abstract

The Controller Area Network (CAN)

architecture was developed for use in automobiles

in the 1980’s. A key “Error Detection” tactic

employed in the CAN specification is the so-called

“bit stuffing” technique. This paper considers the

effects of the “mono-polarity bit sequence” rule

found in the CAN specification. This rule states

that mono-polarity bit sequences of 5 bits or more

are considered errors, unless this bit sequence is

followed by a stuff bit of opposite polarity.

Without bit stuffing, a certain number of messages

that contain these “illegal” mono-polarity bit

sequences would be excluded from the range of the

total number of messages possible for transmission

on the CAN bus. This paper investigates how

many of these sequences would be lost for a

“hypothetical specification”, one which would not

implement bit stuffing. The intention of this paper

is to illustrate why “bit stuffing” is justified.

1 Bit Stuffing

Detection of an error message (“Error

Detection”) on the bus occurs because CAN

specifies that no message on the bus may consist

of 5 or more bits which have the same polarity

(i.e.: ..00000.., and ..11111.. are considered errors).

It happens that the first 6 bits of an error message

are all dominant bits (000000). This serves as an

intentional flag to the rest of the network that an

error has occurred, with each node employing bit

monitoring to count sequences of mono-polarity

bits. Whenever a node identifies a 5-bit sequence

of mono-polarity bits (or 6-bit sequence from an

error message), it halts whatever it is doing and

issues an error message. [1,2]

“Bit stuffing” is the technique by which

CAN allows mono-polarity bit sequences to be

included in messages. The nature of CAN

messages (“frames”) is such that the “start of

frame“ (SOF) field, the arbitration” field (with 11-

bit / 29-bit message id), the “control” field (6 bits),

the “data” (8 to 64 bit) and the CRC (15 bits)

fields (see Figure 1) are capable of having or

contributing to mono-polarity bit sequences

greater than the 5-bit limit imposed by CAN (each

of these message fields, except SOF, consist of

greater than 5 bits).

Figure 1: CAN “data” frame (CAN 2.0A) fields

which employ “bit stuffing” as a means of

detecting false-positive bit-errors

If a method for allowing mono-polarity

bit sequences were not employed, CAN messages

would be severely constrained to an unintuitive

sub-set of message id, data and CRC values. “Bit

stuffing” is the process of inserting a reverse

polarity bit immediately following the sequence of

mono-polarity bits. This “stuff bit” serves as a

flag to receiving nodes that the prior mono-

polarity bit sequence should not be an indication of

an error state. Receiving nodes remove the

identified “stuff bit” from the incoming message,

and the remainder of the message is parsed. The

receiving node restarts its count of subsequent

mono-polarity bit sequences following the

presence of the “stuff bit”, so that it can continue

checking for bit errors. [1,2]

Figure 2: Transmitting inserts a stuff bit, receiving

node removes the stuff bit

insert

stuff bit,

transmit

remove

stuff bit,

receive

0

1

1

1

0

0

S
O

F

R
T

R

Message

Identifier

Control

Field

Data

Field
CRC

CS521 OOAD [Fall 2008] Steve Talbot

Professor Shangping Ren Page 2 / 6

2

2 Investigation

 We start be examining some basic

properties of the CAN frame fields. The total

number of illegal messages due to mono-polarity

bit sequences is “I”. The total number of non-

illegal messages is “NI”. The total number of

possible messages (both I and NI) is “T”.

Therefore,

NI = (T – I).

However, mono-polarity bit sequences

occur within specific fields. Each field has a

different number of bits, making the number of

combinations possible for each field unique. Also,

a single field may have an illegal combination with

all other fields having non-illegal combinations, or

multiple fields may have illegal combinations at

the same time. Therefore, this formula can be

represented more precisely as follows.

 ∏∏
==

−=
F

f

F

f

ff

iTni
11

Here, “F” is the total number of fields

within the message subject to bit stuffing. “f”

corresponds to the specific field. “nif” corresponds

to the number of non-illegal messages for the

specific field. “if” corresponds to the number of

illegal messages for the specific field. This

formula assumes that the total number of

combinations of the composite message depends

on the multiplication of the combinations of the

component fields. Based on examination of this

formula which assumes bit stuffing, it becomes

clear that a method of determining the number of

illegal field combinations is important in order to

determine the total number of messages lost due to

the hypothetical situation when bit stuffing is not

implemented in a CAN frame.

Begin by examining the 11-bit message

id, starting with a 5-bit mono-polarity bit-sequence

(MPBS) of all recessive bits. (i.e.: “11111nnnnnn”,

where “n” stands for a digit that can be either “0”

or “1”). The number of combinations for a sub-

sequence of 6 binary digits (aka, the 6 LSB digits

on the right, “nnnnnn”) would be the 2
6
 = 64.

Continuing, we could shift the block of “1”s over

to the right by 1 bit-space (i.e.: “n11111nnnnn”),

and calculate the number of possible combinations

to arrive at 2
6
 = 64. Continuing this process, we

arrive at the following.

11111nnnnnn 2
6
 = 64

n11111nnnnn 2
6
 = 64

nn11111nnnn 2
6
 = 64

nnn11111nnn 2
6
 = 64

nnnn11111nn 2
6
 = 64

nnnnn11111n 2
6
 = 64

nnnnnn11111 2
6
 = 64

Adding these results, we arrive at the

value 64 + 64 + 64 + 64 + 64 + 64 + 64 = 448. We

would arrive at the same value for a mono-polarity

bit sequence of “0”s, raising the total to 2 * 448 =

896. In addition, the top 2 and bottom 2 sequences

shown above could have an additional MPBS in

each (for a total of 2 MPBSs in each field) that

should also be counted.

11111n11111 11111011111,

11111111111

1111111111n 11111111110,

11111111111
n1111111111 01111111111,

11111111111

00000n00000 00000100000,

00000000000

0000000000n 00000000001,

00000000000
n0000000000 10000000000,

00000000000

The results above indicate that there are

12 extra possible combinations. However, as can

be seen above, some of these combinations are

duplicates (shown in bold). This is also true in the

general case above. This approach identifies an

upper limit on the number of combinations and

identifies the issue that duplicates must be

accounted for. Therefore, in order to get a count

of all combinations without duplicates, we need to

abandon the approach above in order to employ a

stricter approach below.

In order to identify a general pattern by

which we may remove duplicates from our count

of possible combinations, we start by enumerating

the combinations, counting the combinations and

removing the duplicates from the count. These

enumerations follow, with duplicate combinations

shown in bold and counted only 1 time. The count

that is shown indicates the number of unique

combinations for the size of the field and the

number of “constrained” bits (a bit that is held

static as either “0” or “1”, but is not free to be

either “0” or “1”; by contrast we said “n” is

unconstrained).

CS521 OOAD [Fall 2008] Steve Talbot

Professor Shangping Ren Page 3 / 6

3

2-bit field, 1 bit constrained (count = 4)

XX

1n: 10, 11

0n: 00, 01

n1: 01, 11

n0: 00, 10

2-bit field, 2 bits constrained (count = 2)

XX

11

00

3-bit field, 1 bit constrained (count = 8)

XXX

1nn: 100, 101, 110, 111

0nn: 000, 001, 010, 011

n1n: 010, 011, 110, 111

n0n: 000, 001, 100, 101

nn1: 001, 011, 101, 111

nn0: 000, 010, 100, 110

3-bit field, 2 bits constrained (count = 6)

XXX

11n: 110, 111

00n: 000, 001

n11: 011, 111

n00: 000, 100

3-bit field, 3 bits constrained (count = 2)

XXX

111

000

At this stage we can observe the first

pattern, which is that for the 2-bit field, 1 bit

constrained case, count = 4 is identical to 2
t
 = 4,

where t = 2 is the size of the field. For the 3-bit

field, 1 bit constrained case, count = 8 corresponds

to 2
t
 = 8, where t = 3 is the size of the field.

Therefore, for the 1 bit constrained case, for any

field length, in general it is assumed that count =

2
t
.

4-bit field, 1 bit constrained (count = 2
4
 = 16)

(pattern developed - 1 bit constrained ~ 2
n
)

4-bit field, 2 bits constrained (count = 14)

XXXX

11nn: 1100, 1101, 1110, 1111

00nn: 0000, 0001, 0010, 0011

n11n: 0110, 0111, 1110, 1111

n00n: 0000, 0001, 1000, 1001

nn11: 0011, 0111, 1011, 1111

nn00: 0000, 0100, 1000, 1100

4-bit field, 3 bits constrained (count = 6)

XXXX

111n: 1110, 1111

000n: 0000, 0001

n111: 0111, 1111

n000: 0000, 1000

4-bit field, 4 bits constrained (count = 2)

XXXX

1111

0000

5-bit field, 1 bit constrained (count = 2
5
 = 32)

(pattern developed - 1 bit constrained ~ 2
t
)

5-bit field, 2 bits constrained (count = 30)

XXXXX

11nnn 11000, 11001, 11010, 11011,

11100, 11101, 11110, 11111

n11nn 01100, 01101, 01110, 01111,

11100, 11101, 11110, 11111

nn11n 00110, 00111, 01110, 01111,

10110, 10111, 11110, 11111

nnn11 00011, 00111, 01011, 01111,

10011, 10111, 11011, 11111

00nnn 00000, 00001, 00010, 00011,

00100, 00101, 00110, 00111

n00nn 00000, 00001, 00010, 00011,

10000, 10001, 10010, 10011

nn00n 00000, 00001, 01000, 01001,

10000, 10001, 11000, 11001

nnn00 00000, 00100, 01000, 01100,

10000, 10100, 11000, 11100

5-bit field, 3 bits constrained (count = 2
4
 = 16)

XXXXX

111nn 11100, 11101, 11110, 11111

000nn 00000, 00001, 00010, 00011

n111n 01110, 01111, 11110, 11111

n000n 00000, 00001, 10000, 10001

nn111 00111, 01111, 10111, 11111

nn000 00000, 01000, 10000, 11000

5-bit field, 4 bits constrained (count = 6)

XXXXX

1111n: 11110, 11111

0000n: 00000, 00001

n1111: 01111, 11111

n0000: 00000, 10000

5-bit field, 5 bits constrained (count = 2)

XXXXX

11111

00000

CS521 OOAD [Fall 2008] Steve Talbot

Professor Shangping Ren Page 4 / 6

4

At this point, we can see another pattern

developing. Whenever all of the bits in the field

are constrained, the count = 2. Whenever all but 1

of the bits in the field are constrained, the count =

6. Additional data is useful in order to continue

with the identification of patterns. However,

enumerating the combinations of fields for larger

fields is becoming unnecessary. With only a little

more information we can deduce the nature of

larger fields without further enumeration.

6-bit field, 1 bit constrained (count = 2
6
 = 64)

(pattern developed - 1 bit constrained ~ 2
t
)

… (skipping, 2/3/4 bit constrained, as we will be

deducing the counts for these)

6-bit field, 4 bits constrained (count = 2
4
 = 16)

XXXXXX

1111nn: 111100, 111101, 111110, 111111

 000nn: 000000, 000001, 000010, 000011

n1111n: 011110, 011111, 111110, 111111

n0000n: 000000, 000001, 100000, 100001

nn1111: 001111, 011111, 101111, 111111

nn0000: 000000, 010000, 100000, 110000

6-bit field, 5 bits constrained (count = 6)

XXXXXX

11111n: 111110, 111111

00000n: 000000, 000001

n11111: 011111, 111111

n00000: 000000, 100000

6-bit field, 6 bits constrained (count = 2)

XXXXXX

111111

000000

It is now time to specify how we may

determine any combination count for any field

length and any number of constrained bits. We

deduce our formulation by re-stating the results

from above in a more compact format. “x/y”

shown below indicates “x” constrained bits within

a “y”-bit length field. For instance, “3/5” indicates

3 constrained bits in a 5-bit field (“5-bit field, 3

bits constrained”). The value shown to the right of

“x/y” below indicates the count of combinations

(without duplicates) associated with this case. For

instance “1/2 → 4 → 2
2
” indicates that it considers

a “2-bit field, 1 bit constrained”, that the count of

unique combinations is “4”, and that the count can

be represented as “2
2
”.

1/1 → 2 → 2
1

1/2 → 4 → 2
2

2/2 → 2 → 2
1

1/3 → 8 → 2
3

2/3 → 6 → 2
3
 - 2 Rule C1

3/3 → 2 → 2
2
 - 2 Rule C2

1/4 → 16 → 2
4
 Rule A1

2/4 → 14 → 2
4
 – 2 Rule A2

3/4 → 6 → 2
3
 – 2 Rule A3

4/4 → 2 → 2
2
 – 2 Rule A4

1/5 → 32 → 2
5
 Rule A1

2/5 → 30 → 2
5
 – 2 Rule A2

3/5 → 16 → 2
4

Rule B1

4/5 → 6 → 2
3
 – 2 Rule A3

5/5 → 2 → 2
2
 - 2 Rule A4

1/6 → 64 → 2
6
 Rule A1

2/6 → 62 → 2
6
 – 2 Rule A2

3/6 → 38 → 2
5
 + 6

4/6 → 16 → 2
4

Rule B1

5/6 → 6 → 2
3
 – 2 Rule A3

6/6 → 2 → 2
2
 - 2 Rule A4

1/7 → 128 → 2
7
 Rule A1

2/7 → 126 → 2
7
 – 2 Rule A2

3/7 → 86 → 2
6
 + 2

4
 + 6

4/7 → 40 → 2
5
 + 2

3

5/7 → 16 → 2
4

Rule B1

6/7 → 6 → 2
3
 – 2 Rule A3

7/7 → 2 → 2
2
 - 2 Rule A4

1/8 → 256 → 2
8
 Rule A1

2/8 → 254 → 2
8
 – 2 Rule A2

3/8 → 188 → 2
7
 + 2

6
 - 4

4/8 → 94 → 2
6
 + 2

5
 - 2

5/8 → 40 → 2
5
 + 2

3

6/8 → 16 → 2
4

Rule B1

7/8 → 6 → 2
3
 – 2 Rule A3

8/8 → 2 → 2
2
 – 2 Rule A4

We can see from the results shown here

that a new pattern emerges when you grow from

considering the 1-bit field up to the 8-bit field.

This pattern can best be seen in the case of the 8-

bit field, which is re-stated below with each line

labeled with a preceding letter.

a) 1/8 → 256 → 2
8

b) 2/8 → 254 → 2
8
 - 2

CS521 OOAD [Fall 2008] Steve Talbot

Professor Shangping Ren Page 5 / 6

5

c) 3/8 → 188 → 2
7
 + 2

6
 + 4

d) 4/8 → 94 → 2
6
 + 2

5
 - 2

e) 5/8 → 40 → 2
5
 + 2

3

f) 6/8 → 16 → 2
4

g) 7/8 → 6 → 2
3
 - 2

h) 8/8 → 2 → 2
2
 - 2

A. These rules only apply to 4-bit fields and larger:

1. If “1” bit is constrained (line a), the

unique count is 2
8
.

a. “t” is the field length, count = 2
t
.

2. If “2” bits are constrained (line b), the

unique count is 2
t
 – 2.

3. If “(t-1)” bits are constrained (line g), the

unique count is 2
3
 – 2.

4. If “t” bits are constrained (line h), the

unique count is 2
2
 – 2.

B. This rule only applies to 3-bit fields and larger:

1. If “(t-2)” bits are constrained (line f), the

unique count is 2
4
.

C. This rule only applies to the 3-bit field:

1. If “(t-1) = 2” bits are constrained, the

unique count is (2
t
 – 2) = (2

3
 – 2), the

same as “A3”.

2. If “t” bits are constrained, the unique

count is 2
2
 – 2, the same as “A4”.

The 1-bit and 2-bit cases are “special cases”

which serve as the basis for the remainder of the

cases, but do not necessarily abide by the rules

which apply to the other cases.

The rules above would seem to suggest

that there is an orderly transition from “all bits

constrained” (8/8) to “1 bit constrained” (1/8),

such that we might be able to formulate a

straightforward analytical equation to predict the

counts for each case. However, the counts “in the

middle” (lines c, d and e) do not seem to have any

pattern which can be easily captured to serve our

purpose of creating a formula for prediction. The

counts re-stated below indicate that as the field

length increases by 1, the number of “middle”

lines increases by 1. Also, it is seen that the count

for “4/7 → 40 → 2
5
 + 2

3
” is identical to the count

for “5/8 → 40 → 2
5
 + 2

3
”, suggesting that a pattern

is continuing to emerge, but that it requires a more

complicated formulation than that which is

provided here.

3/6 → 38 → 2
5
 + 6

3/7 → 86 → 2
6
 + 2

4
 + 6

4/7 → 40 → 2
5
 + 2

3

3/8 → 188 → 2
7
 + 2

6
 - 4

4/8 → 94 → 2
6
 + 2

5
 - 2

5/8 → 40 → 2
5
 + 2

3

In addition, it can be said that “3/6 → 38

→ 2
5
 + 6” prepares the way for “4/7 → 40 → 2

5
 +

2
3
”, such that subsequent cases following the 4-bit

case all include a “40 → 2
5
 + 2

3
” value. This

appears to be true also for “2/4 → 14 → 2
4
 – 2”

preparing the way for

“3/5 → 16 → 2
4
”, and “1/2 → 4 → 2

2
” preparing

the way for “2/3 → 6 → 2
3
 - 2”. This supports the

view that “middle” lines are not simply “noise”,

but rather values that require a more complicated

formulation than is provided here.

However, although a formula has not

been provided here, a computer program has been

written which calculates the unique count for each

case. The user specifies the field length

(“fieldLength”) and the number of bits of the

MPBS (“bitsConstrained”). The program creates

all of the enumerations, and then either outputs the

enumerations or outputs the counts to standard

output. The only restrictions on “fieldLength” and

“bitsConstrained” are that “bitsConstrained <=

fieldLength” and “bitsConstrained > 0”. Only 1

MPBS per field is considered, but “fieldLength”

and “bitsConstrained” may be any arbitrary length

(this computer program was used to produce the

counts in the 6, 7 and 8 bit cases above).

Using the computer program, it was

found that for an 11-bit field, 5 bits constrained

(“5/11”), there are 502 non-duplicate

combinations. These combinations represent

message ids in a CAN 2.0A 11-bit data frame

which would be “illegal” if “bit stuffing” were not

employed. The total number of combinations for

an 11-bit field is 2
11
 = 2048. Therefore, it is seen

that without bit stuffing, the CAN specification

would lose nearly 1/4 of the possible message ids,

severely constraining the scalability of a CAN

network.

One further issue remains to be addressed

before concluding discussion of this topic. If a

MPBS overlaps both one field (say the message id)

and an adjacent field (say the control field), then

the analysis presented here still applies. The

reason is that in order for an overlap to occur, a

portion of the MPBS has to exceed a field

boundary. In calculating the total possible number

of combinations of bit sequences having the

CS521 OOAD [Fall 2008] Steve Talbot

Professor Shangping Ren Page 6 / 6

6

constrained MPBS embedded in them, we

“translate” the MPBS bitwise from one boundary

to the other in order to constrain the possible

combinations of the bits on either side of the

MPBS. As soon as the MPBS moves away from

the field boundary, the overlap includes 1 or more

“n” bits instead of 1 or more MPBS bits, as seen

below.

Step 1: “nnnnnnn1111|1”

Step 2: “nnnnnn11111|n”

…

The analysis up until now has implicitly

assumed that the bits on either side of the field

boundary were “n” bits, in that we did not

constrain these bits nor did we consider them in

our calculation. Therefore, in order to account for

the overlap, the effective “field length” is

increased to include the entire bit sequence,

including the “overlap bits”. For instance, the bit

sequence message id “nnnnnnn1111|1” (where “|”

is meant to indicate the field boundary) would

necessitate that we increase the field length in our

calculations from the standard 11-bit length to 12

bits, to include the overlapping bit on the right-

most side.

Conclusions

Using the computer program, it was

found that for an 11-bit field, 5 bits constrained

(“5/11”), there are 502 non-duplicate

combinations. It is seen that without bit stuffing,

the CAN specification would lose nearly 1/4 of the

possible message ids, severely constraining the

scalability of a CAN network. In addition,

although no analytic formula was produced as the

result of this paper, the groundwork for future

work was established (should someone deem this

necessary), and a computer program which

calculates the number of non-duplicate MPBS

combinations was constructed.

References

 [1] D. Paret, Multiplexed Networks for

 Embedded Systems, Wiley, 2007

 [2] W. Voss, A Comprehensible Guide to

 Controller Area Network, Copperhill

 Technologies Corporation, 2005

