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Abstract 
 

The Controller Area Network (CAN) 

architecture was developed for use in automobiles 

in the 1980’s.  A key “Error Detection” tactic 

employed in the CAN specification is the so-called 

“bit stuffing” technique.  This paper considers the 

effects of the “mono-polarity bit sequence” rule 

found in the CAN specification.  This rule states 

that mono-polarity bit sequences of 5 bits or more 

are considered errors, unless this bit sequence is 

followed by a stuff bit of opposite polarity.  

Without bit stuffing, a certain number of messages 

that contain these “illegal” mono-polarity bit 

sequences would be excluded from the range of the 

total number of messages possible for transmission 

on the CAN bus.  This paper investigates how 

many of these sequences would be lost for a 

“hypothetical specification”, one which would not 

implement bit stuffing.  The intention of this paper 

is to illustrate why “bit stuffing” is justified. 

 

1   Bit Stuffing 
 

Detection of an error message (“Error 

Detection”) on the bus occurs because CAN 

specifies that no message on the bus may consist 

of 5 or more bits which have the same polarity 

(i.e.: ..00000.., and ..11111.. are considered errors).  

It happens that the first 6 bits of an error message 

are all dominant bits (000000).  This serves as an 

intentional flag to the rest of the network that an 

error has occurred, with each node employing bit 

monitoring to count sequences of mono-polarity 

bits.   Whenever a node identifies a 5-bit sequence 

of mono-polarity bits (or 6-bit sequence from an 

error message), it halts whatever it is doing and 

issues an error message.  [1,2] 

“Bit stuffing” is the technique by which 

CAN allows mono-polarity bit sequences to be 

included in messages.  The nature of CAN 

messages (“frames”) is such that the “start of 

frame“ (SOF) field, the arbitration” field (with 11-

bit / 29-bit message id), the “control” field (6 bits), 

the “data” (8 to 64 bit) and the CRC (15 bits) 

fields (see Figure 1) are capable of having or 

contributing to mono-polarity bit sequences 

greater than the 5-bit limit imposed by CAN (each 

of these message fields, except SOF, consist of 

greater than 5 bits).   

 

 
Figure 1: CAN “data” frame (CAN 2.0A) fields 

which employ “bit stuffing” as a means of 

detecting false-positive bit-errors 

 

If a method for allowing mono-polarity 

bit sequences were not employed, CAN messages 

would be severely constrained to an unintuitive 

sub-set of message id, data and CRC values.  “Bit 

stuffing” is the process of inserting a reverse 

polarity bit immediately following the sequence of 

mono-polarity bits.  This “stuff bit” serves as a 

flag to receiving nodes that the prior mono-

polarity bit sequence should not be an indication of 

an error state.  Receiving nodes remove the 

identified “stuff bit” from the incoming message, 

and the remainder of the message is parsed.  The 

receiving node restarts its count of subsequent 

mono-polarity bit sequences following the 

presence of the “stuff bit”, so that it can continue 

checking for bit errors.  [1,2] 

 
Figure 2: Transmitting inserts a stuff bit, receiving 

node removes the stuff bit 

insert  

stuff bit, 

transmit 

remove 

stuff bit, 

receive 

0 

1 

1 

1 

0 

0 

S
O

F 

R
T

R 

Message 

Identifier 

Control 

Field 

Data 

Field 
CRC 



CS521 OOAD [Fall 2008]  Steve Talbot 

Professor Shangping Ren  Page 2 / 6 

2 

 

2   Investigation 
 

 We start be examining some basic 

properties of the CAN frame fields.  The total 

number of illegal messages due to mono-polarity 

bit sequences is “I”.  The total number of non-

illegal messages is “NI”.  The total number of 

possible messages (both I and NI) is “T”.  

Therefore,  

 

NI = (T – I).  

 

However, mono-polarity bit sequences 

occur within specific fields.  Each field has a 

different number of bits, making the number of 

combinations possible for each field unique.  Also, 

a single field may have an illegal combination with 

all other fields having non-illegal combinations, or 

multiple fields may have illegal combinations at 

the same time.  Therefore, this formula can be 

represented more precisely as follows. 
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Here, “F” is the total number of fields 

within the message subject to bit stuffing.  “f” 

corresponds to the specific field.  “nif” corresponds 

to the number of non-illegal messages for the 

specific field.  “if” corresponds to the number of 

illegal messages for the specific field.    This 

formula assumes that the total number of 

combinations of the composite message depends 

on the multiplication of the combinations of the 

component fields.  Based on examination of this 

formula which assumes bit stuffing, it becomes 

clear that a method of determining the number of 

illegal field combinations is important in order to 

determine the total number of messages lost due to 

the hypothetical situation when bit stuffing is not 

implemented in a CAN frame. 

Begin by examining the 11-bit message 

id, starting with a 5-bit mono-polarity bit-sequence 

(MPBS) of all recessive bits. (i.e.: “11111nnnnnn”, 

where “n” stands for a digit that can be either “0” 

or “1”).  The number of combinations for a sub-

sequence of 6 binary digits (aka, the 6 LSB digits 

on the right, “nnnnnn”) would be the 2
6
 = 64.  

Continuing, we could shift the block of “1”s over 

to the right by 1 bit-space (i.e.: “n11111nnnnn”), 

and calculate the number of possible combinations 

to arrive at 2
6
 = 64.  Continuing this process, we 

arrive at the following. 

 

11111nnnnnn  2
6
 = 64 

n11111nnnnn  2
6
 = 64 

nn11111nnnn  2
6
 = 64 

nnn11111nnn  2
6
 = 64 

nnnn11111nn  2
6
 = 64 

nnnnn11111n  2
6
 = 64 

nnnnnn11111  2
6
 = 64 

 

Adding these results, we arrive at the 

value 64 + 64 + 64 + 64 + 64 + 64 + 64 = 448.  We 

would arrive at the same value for a mono-polarity 

bit sequence of “0”s, raising the total to 2 * 448 = 

896.  In addition, the top 2 and bottom 2 sequences 

shown above could have an additional MPBS in 

each (for a total of 2 MPBSs in each field) that 

should also be counted. 

 

11111n11111  11111011111,  

11111111111 

1111111111n  11111111110,  

11111111111 
n1111111111  01111111111,  

11111111111 
 

00000n00000  00000100000,  

00000000000 

0000000000n  00000000001,  

00000000000 
n0000000000  10000000000,  

00000000000 
 

The results above indicate that there are 

12 extra possible combinations.  However, as can 

be seen above, some of these combinations are 

duplicates (shown in bold).  This is also true in the 

general case above.  This approach identifies an 

upper limit on the number of combinations and 

identifies the issue that duplicates must be 

accounted for.  Therefore, in order to get a count 

of all combinations without duplicates, we need to 

abandon the approach above in order to employ a 

stricter approach below. 

In order to identify a general pattern by 

which we may remove duplicates from our count 

of possible combinations, we start by enumerating 

the combinations, counting the combinations and 

removing the duplicates from the count.  These 

enumerations follow, with duplicate combinations 

shown in bold and counted only 1 time.  The count 

that is shown indicates the number of unique 

combinations for the size of the field and the 

number of “constrained” bits (a bit that is held 

static as either “0” or “1”, but is not free to be 

either “0” or “1”; by contrast we said “n” is 

unconstrained). 

 



CS521 OOAD [Fall 2008]  Steve Talbot 

Professor Shangping Ren  Page 3 / 6 

3 

2-bit field, 1 bit constrained (count = 4) 

XX 

1n: 10, 11  

0n: 00, 01 

n1: 01, 11  

n0: 00, 10 

 

2-bit field, 2 bits constrained (count = 2) 

XX 

11 

00 

 

3-bit field, 1 bit constrained (count = 8) 

XXX 

1nn: 100, 101, 110, 111  

0nn: 000, 001, 010, 011 

n1n: 010, 011, 110, 111  

n0n: 000, 001, 100, 101 

nn1: 001, 011, 101, 111  

nn0: 000, 010, 100, 110 

 

3-bit field, 2 bits constrained (count = 6) 

XXX 

11n: 110, 111  

00n: 000, 001 

n11: 011, 111  

n00: 000, 100 

 

3-bit field, 3 bits constrained (count = 2) 

XXX 

111 

000 

 

At this stage we can observe the first 

pattern, which is that for the 2-bit field, 1 bit 

constrained case, count = 4 is identical to 2
t
 = 4, 

where t = 2 is the size of the field.  For the 3-bit 

field, 1 bit constrained case, count = 8 corresponds 

to 2
t
 = 8, where t = 3 is the size of the field.  

Therefore, for the 1 bit constrained case, for any 

field length, in general it is assumed that count = 

2
t
. 

 

4-bit field, 1 bit constrained (count = 2
4
 = 16) 

(pattern developed - 1 bit constrained ~ 2
n
) 

 

4-bit field, 2 bits constrained (count = 14) 

XXXX 

11nn: 1100, 1101, 1110, 1111  

00nn: 0000, 0001, 0010, 0011 

n11n: 0110, 0111, 1110, 1111  

n00n: 0000, 0001, 1000, 1001 

nn11: 0011, 0111, 1011, 1111  

nn00: 0000, 0100, 1000, 1100 

 

4-bit field, 3 bits constrained (count = 6) 

XXXX 

111n: 1110, 1111  

000n: 0000, 0001 

n111: 0111, 1111  

n000: 0000, 1000 

 

4-bit field, 4 bits constrained (count = 2) 

XXXX 

1111 

0000 

 

5-bit field, 1 bit constrained (count = 2
5
 = 32) 

(pattern developed - 1 bit constrained ~ 2
t
) 

 

5-bit field, 2 bits constrained (count = 30) 

XXXXX 

11nnn 11000, 11001, 11010, 11011,  

11100, 11101, 11110, 11111 

n11nn 01100, 01101, 01110, 01111,  

11100, 11101, 11110, 11111 

nn11n 00110, 00111, 01110, 01111,  

10110, 10111, 11110, 11111 

nnn11 00011, 00111, 01011, 01111,  

10011, 10111, 11011, 11111 

 

00nnn 00000, 00001, 00010, 00011,  

00100, 00101, 00110, 00111 

n00nn 00000, 00001, 00010, 00011,  

10000, 10001, 10010, 10011 

nn00n 00000, 00001, 01000, 01001,  

10000, 10001, 11000, 11001 

nnn00 00000, 00100, 01000, 01100,  

10000, 10100, 11000, 11100 

 

5-bit field, 3 bits constrained (count = 2
4
 = 16) 

XXXXX 

111nn 11100, 11101, 11110, 11111  

000nn 00000, 00001, 00010, 00011 

n111n 01110, 01111, 11110, 11111  

n000n 00000, 00001, 10000, 10001 

nn111 00111, 01111, 10111, 11111  

nn000 00000, 01000, 10000, 11000 

 

5-bit field, 4 bits constrained (count = 6) 

XXXXX 

1111n: 11110, 11111  

0000n: 00000, 00001 

n1111: 01111, 11111  

n0000: 00000, 10000 

 

5-bit field, 5 bits constrained (count = 2) 

XXXXX 

11111 

00000 
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At this point, we can see another pattern 

developing.  Whenever all of the bits in the field 

are constrained, the count = 2.  Whenever all but 1 

of the bits in the field are constrained, the count = 

6.  Additional data is useful in order to continue 

with the identification of patterns.  However, 

enumerating the combinations of fields for larger 

fields is becoming unnecessary.  With only a little 

more information we can deduce the nature of 

larger fields without further enumeration. 

 

6-bit field, 1 bit constrained (count = 2
6
 = 64) 

(pattern developed - 1 bit constrained ~ 2
t
) 

 

… (skipping, 2/3/4 bit constrained, as we will be 

deducing the counts for these) 

 

6-bit field, 4 bits constrained (count = 2
4
 = 16) 

XXXXXX 

1111nn: 111100, 111101, 111110, 111111  

  000nn: 000000, 000001, 000010, 000011 

n1111n: 011110, 011111, 111110, 111111 

n0000n: 000000, 000001, 100000, 100001 

nn1111: 001111, 011111, 101111, 111111 

nn0000: 000000, 010000, 100000, 110000 

 

6-bit field, 5 bits constrained (count = 6) 

XXXXXX 

11111n: 111110, 111111  

00000n: 000000, 000001 

n11111: 011111, 111111  

n00000: 000000, 100000 

 

6-bit field, 6 bits constrained (count = 2) 

XXXXXX 

111111 

000000 

 

It is now time to specify how we may 

determine any combination count for any field 

length and any number of constrained bits.  We 

deduce our formulation by re-stating the results 

from above in a more compact format.  “x/y” 

shown below indicates “x” constrained bits within 

a “y”-bit length field.  For instance, “3/5” indicates 

3 constrained bits in a 5-bit field (“5-bit field, 3 

bits constrained”).  The value shown to the right of 

“x/y” below indicates the count of combinations 

(without duplicates) associated with this case.  For 

instance “1/2 → 4 → 2
2
” indicates that it considers 

a “2-bit field, 1 bit constrained”, that the count of 

unique combinations is “4”, and that the count can 

be represented as “2
2
”. 

 

 

 

1/1 → 2 → 2
1
 

------------------------------------------------------------- 

1/2 → 4 → 2
2
 

2/2 → 2 → 2
1
 

------------------------------------------------------------- 

1/3 → 8 → 2
3
 

2/3 → 6 → 2
3
 - 2   Rule C1 

3/3 → 2 → 2
2
 - 2   Rule C2 

------------------------------------------------------------- 

1/4 → 16 → 2
4
   Rule A1 

2/4 → 14 → 2
4
 – 2  Rule A2 

3/4 → 6   → 2
3
 – 2  Rule A3 

4/4 → 2   → 2
2
 – 2  Rule A4 

------------------------------------------------------------- 

1/5 → 32 → 2
5
   Rule A1 

2/5 → 30 → 2
5
 – 2  Rule A2 

3/5 → 16 → 2
4   

Rule B1 

4/5 → 6   → 2
3
 – 2  Rule A3 

5/5 → 2   → 2
2
 - 2  Rule A4 

------------------------------------------------------------- 

1/6 → 64 → 2
6
   Rule A1 

2/6 → 62 → 2
6
 – 2  Rule A2 

3/6 → 38 → 2
5
 + 6 

4/6 → 16 → 2
4   

Rule B1 

5/6 → 6   → 2
3
 – 2  Rule A3 

6/6 → 2   → 2
2
 - 2  Rule A4 

------------------------------------------------------------- 

1/7 → 128 → 2
7
   Rule A1 

2/7 → 126 → 2
7
 – 2  Rule A2 

3/7 → 86 → 2
6
 + 2

4
 + 6 

4/7 → 40 → 2
5
 + 2

3
 

5/7 → 16 → 2
4   

Rule B1 

6/7 → 6   → 2
3
 – 2  Rule A3 

7/7 → 2   → 2
2
 - 2  Rule A4 

------------------------------------------------------------- 

1/8 → 256 → 2
8
   Rule A1 

2/8 → 254 → 2
8
 – 2  Rule A2 

3/8 → 188 → 2
7
 + 2

6
 - 4 

4/8 → 94 → 2
6
 + 2

5
 - 2 

5/8 → 40 → 2
5
 + 2

3
 

6/8 → 16 → 2
4   

Rule B1 

7/8 → 6  → 2
3
 – 2  Rule A3 

8/8 → 2  → 2
2
 – 2  Rule A4 

 

We can see from the results shown here 

that a new pattern emerges when you grow from 

considering the 1-bit field up to the 8-bit field.  

This pattern can best be seen in the case of the 8-

bit field, which is re-stated below with each line 

labeled with a preceding letter. 

 

a) 1/8 → 256 → 2
8
 

b) 2/8 → 254 → 2
8
 - 2 
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c) 3/8 → 188 → 2
7
 + 2

6
 + 4 

d) 4/8 → 94 → 2
6
 + 2

5
 - 2 

e) 5/8 → 40 → 2
5
 + 2

3
 

f) 6/8 → 16 → 2
4
 

g) 7/8 → 6  → 2
3
 - 2 

h) 8/8 → 2  → 2
2
 - 2 

 

A. These rules only apply to 4-bit fields and larger: 

 

1. If “1” bit is constrained (line a), the 

unique count is 2
8
. 

a. “t” is the field length, count = 2
t
. 

2. If “2” bits are constrained (line b), the 

unique count is 2
t
 – 2. 

3. If “(t-1)” bits are constrained (line g), the 

unique count is 2
3
 – 2. 

4. If “t” bits are constrained (line h), the 

unique count is 2
2
 – 2. 

 

B. This rule only applies to 3-bit fields and larger: 

 

1. If “(t-2)” bits are constrained (line f), the 

unique count is 2
4
. 

 

C. This rule only applies to the 3-bit field: 

 

1. If “(t-1) = 2” bits are constrained, the 

unique count is (2
t
 – 2) = (2

3
 – 2), the 

same as “A3”. 

2. If “t” bits are constrained, the unique 

count is 2
2
 – 2, the same as “A4”. 

 

The 1-bit and 2-bit cases are “special cases” 

which serve as the basis for the remainder of the 

cases, but do not necessarily abide by the rules 

which apply to the other cases. 

The rules above would seem to suggest 

that there is an orderly transition from “all bits 

constrained” (8/8) to “1 bit constrained” (1/8), 

such that we might be able to formulate a 

straightforward analytical equation to predict the 

counts for each case.  However, the counts “in the 

middle” (lines c, d and e) do not seem to have any 

pattern which can be easily captured to serve our 

purpose of creating a formula for prediction.  The 

counts re-stated below indicate that as the field 

length increases by 1, the number of “middle” 

lines increases by 1.  Also, it is seen that the count 

for “4/7 → 40 → 2
5
 + 2

3
” is identical to the count 

for “5/8 → 40 → 2
5
 + 2

3
”, suggesting that a pattern 

is continuing to emerge, but that it requires a more 

complicated formulation than that which is 

provided here. 

 

3/6 → 38 → 2
5
 + 6 

 

3/7 → 86 → 2
6
 + 2

4
 + 6 

4/7 → 40 → 2
5
 + 2

3
 

 

3/8 → 188 → 2
7
 + 2

6
 - 4 

4/8 → 94 → 2
6
 + 2

5
 - 2 

5/8 → 40 → 2
5
 + 2

3
 

 

In addition, it can be said that “3/6 → 38 

→ 2
5
 + 6” prepares the way for “4/7 → 40 → 2

5
 + 

2
3
”, such that subsequent cases following the 4-bit 

case all include a “40 → 2
5
 + 2

3
” value.  This 

appears to be true also for “2/4 → 14 → 2
4
 – 2” 

preparing the way for  

“3/5 → 16 → 2
4
”, and “1/2 → 4 → 2

2
” preparing 

the way for “2/3 → 6 → 2
3
 - 2”.  This supports the 

view that “middle” lines are not simply “noise”, 

but rather values that require a more complicated 

formulation than is provided here. 

However, although a formula has not 

been provided here, a computer program has been 

written which calculates the unique count for each 

case.  The user specifies the field length 

(“fieldLength”) and the number of bits of the 

MPBS (“bitsConstrained”).  The program creates 

all of the enumerations, and then either outputs the 

enumerations or outputs the counts to standard 

output.  The only restrictions on “fieldLength” and 

“bitsConstrained” are that “bitsConstrained <= 

fieldLength” and “bitsConstrained > 0”.  Only 1 

MPBS per field is considered, but “fieldLength” 

and “bitsConstrained” may be any arbitrary length 

(this computer program was used to produce the 

counts in the 6, 7 and 8 bit cases above). 

Using the computer program, it was 

found that for an 11-bit field, 5 bits constrained 

(“5/11”), there are 502 non-duplicate 

combinations.  These combinations represent 

message ids in a CAN 2.0A 11-bit data frame 

which would be “illegal” if “bit stuffing” were not 

employed.  The total number of combinations for 

an 11-bit field is 2
11
 = 2048.  Therefore, it is seen 

that without bit stuffing, the CAN specification 

would lose nearly 1/4 of the possible message ids, 

severely constraining the scalability of a CAN 

network. 

One further issue remains to be addressed 

before concluding discussion of this topic.  If a 

MPBS overlaps both one field (say the message id) 

and an adjacent field (say the control field), then 

the analysis presented here still applies.  The 

reason is that in order for an overlap to occur, a 

portion of the MPBS has to exceed a field 

boundary.  In calculating the total possible number 

of combinations of bit sequences having the 
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constrained MPBS embedded in them, we 

“translate” the MPBS bitwise from one boundary 

to the other in order to constrain the possible 

combinations of the bits on either side of the 

MPBS.  As soon as the MPBS moves away from 

the field boundary, the overlap includes 1 or more 

“n” bits instead of 1 or more MPBS bits, as seen 

below.   

 

Step 1: “nnnnnnn1111|1” 

 

Step 2: “nnnnnn11111|n” 

 

… 

 

The analysis up until now has implicitly 

assumed that the bits on either side of the field 

boundary were “n” bits, in that we did not 

constrain these bits nor did we consider them in 

our calculation.  Therefore, in order to account for 

the overlap, the effective “field length” is 

increased to include the entire bit sequence, 

including the “overlap bits”.  For instance, the bit 

sequence message id “nnnnnnn1111|1” (where “|” 

is meant to indicate the field boundary) would 

necessitate that we increase the field length in our 

calculations from the standard 11-bit length to 12 

bits, to include the overlapping bit on the right-

most side. 

 

Conclusions 
 

Using the computer program, it was 

found that for an 11-bit field, 5 bits constrained 

(“5/11”), there are 502 non-duplicate 

combinations.  It is seen that without bit stuffing, 

the CAN specification would lose nearly 1/4 of the 

possible message ids, severely constraining the 

scalability of a CAN network.  In addition, 

although no analytic formula was produced as the 

result of this paper, the groundwork for future 

work was established (should someone deem this 

necessary), and a computer program which 

calculates the number of non-duplicate MPBS 

combinations was constructed. 
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