CS525, Project 1: Design Specification Document (DSD)
Commands
I. “create”

a. Creates a table entry in the “catalog.bin” file.

b. Creates the file “tableName_header”
i. create table [tableName](columnName1, .. columnNameMax)

1. “create table xyz(aa, bb, cc)”
II. “insert”

a. Inserts a record into the table.
b. Records are not saved / written to file unless the user periodically issues the “commit” command.

c. However, if the buffer of records in main memory is full, further inserts will flush (save / write) the buffer records to file to make room for the new insert in the buffer.
i. insert into [tableName] values(value1, .. valueMax)

1. “insert into xyz values(10, 20, 30)”

III. “select”
a. Retrieves records from both the main memory buffer and the file for display.
i. select * from [tableName]

1. “select * from xyz”

ii. select [columnName(s)] from [tableName]

1. “select aa, cc from xyz”

iii. select [columnName(s)] from [tableName]

where columnName = value

1. “select bb, cc from xyz where aa = 5”

iv. select [columnName(s)] from [tableName]
where columnNameX = value and columnNameY = value and ..
1. “select aa, bb, cc from xyz where aa = 5 and cc = 17”

IV. “commit”
a. Flushes (saves / writes) the contents of the main memory buffer to file.
i. “commit”
V. “print catalog”
a. Prints the contents of the “catalog.bin” file to screen.

i. “print catalog”
VI. “print table”

a. Retrieves records from both the main memory buffer and the file for display.

b. Equivalent to the “select * from [tableName]” command.

i. print table [tableName]

1. “print table xyz”

VII. “print buffer”
a. Print information about the buffer pool, including “buffer #”, “table name” and “block # / pageID”
i. “print buffer”
VIII. “print buffer data”
a. Print the current contents of the buffer pool, separated by “table name” (but not by block)
i. “print buffer data”
IX. “print hit rate”
a. Print the hit rate
b. “total # of block requests”

i. The sum of requests for blocks from the buffer pool (“hits”) and pages from the table file (“misses”).

ii.
[image: image1.wmf]fr

bp

br

n

n

n

+

=

c. “# of hits” = (total # of block requests) – (# requests read from file)

i.
[image: image2.wmf](

)

fr

br

bp

h

n

n

n

n

-

=

=

d. “hit rate” = (# of hits) / (total number of block requests)

i.
[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

-

=

=

br

fr

br

fr

br

br

h

h

n

n

n

n

n

n

n

r

1

ii. “print hit rate”
X. “set timer on”
a. The duration of each operation is displayed in milliseconds.

i. “set timer on”

XI. “set timer off”
a. The duration of each operation is not displayed.

b. This is the default of the application upon startup.

i. “set timer off”

XII. “set path”
a. Change the drive and directory path where the application expects to find “Header” and table files and the “catalog.bin” file.
i. set path [pathname]

1. “set path C:\databasefiles”

Main Modules

I. “UserInterface” (P = parser)
a. Parses and validates user input, including supported SQL queries (create, insert, etc.) and “debugging” commands (print buffer, print catalog, etc.)
b. Performs DBMS commands invoked via the user input.

c. Displays “error messages” and “result messages” found in the “MessageManager” module.
II. “QueryManager” (QM)
a. Invokes “create”, “insert” and “select” commands.
i. “create” invokes commands directly from the “StorageManager” module.

ii. “insert”, “select” and “commit” methods invoke “BufferManager” module commands, which invoke “StorageManager” module commands.
b. Sets “error” and “result” message strings in the “MessageManager” module.
III. “BufferManager” (BM)
a. Writes / loads individual buffer pool blocks to / from file
i. Uses “StorageManager” module methods
ii. Removes / adds “lock” on the buffer pool blocks

iii. Updates “error” message in “MessageManager” module as necessary

b. Commits buffer pool contents to file

i. Allocates new space in the data files for new “data pages”
ii. Writes the contents of the buffer pool (each block may be designated for a different table) to file
iii. Marks the buffer pool as empty (available for overwrite)
c. Handles “insert” of records into buffer pool
i. “Insert into empty”

1. A completely empty buffer pool block is available for insert

2. An empty buffer pool block is an “empty”

ii. “Insert into partial”

1. A buffer pool block is not empty, but there are empty rows in a block available for insert

2. Non-empty, non-full block is a “partial”

iii. “Load and insert into partial”
1. Found a “partial” page in the data file
2. A “partial” file page has priority over either an “empty” or a “partial” buffer pool block when receiving a new record insert.

3. Load the page-from-file “partial” into an empty buffer pool block

4. Insert the record into the newly loaded “partial”

iv. “Flush, load and insert into partial”

1. Same as “Load and insert into partial”, except there are no empty buffer pool blocks available (all are “partial” blocks or full blocks).
2. Locate the candidate buffer pool block for flushing

3. “Flush” the block to file (aka, write it to file) prior to load and insert operations.
d. Updates “BufferInfoTable” (BIT)

i. BIT tracks metadata about each buffer pool block

1. FieldCount, RowCount, RecordSize, PageID, etc.

ii. “Header” file

1. The file version of the BIT
2. If the buffer pool block is new and never yet written to file
a. BIT updated by BM actions only

3. If the buffer pool block was loaded in from file

a. BIT updated by the “Header” file first upon loading, and BM actions update the BIT afterwards

IV. “StorageManager” (SM)
a. Performs low-level file operations (“fstream” object)
i. “write” / “read” records of individual buffer pool blocks to / from table file
ii. “write” / ”read” header information to / from header file
b. Performs low-level methods

i. “createTable”

ii. “readHeader”, “writeHeader”
iii. “readPage”, “writePage”, “allocateDataPage”, etc.
iv. “activateTablePageLock”, “deactivateTablePageLock”, etc.
v. “computeFreeRows”

vi. “createFillerString”

c. Updates “error” message in “MessageManager” module as necessary

V. “CatalogManager” (CM)

a. Performs low-level file operations (“fstream” object)
i. “write” / “read” data dictionary information to / from Catalog file

b. Performs low-level methods
i. “readTimestamp”, “writeTimestamp”

ii. “readMetaData”, “writeMetaData”
iii. “add / remove / replace CatalogTableMetaData”

iv. “getNumberOfAttributes”

v. “getTableSize”

c. Stores “Catalog” and “CatalogFile” objects

i. “Catalog” object contains table metadata (numberOfRows, attributeNames, etc)

ii. “CatalogFile” object contains drive, directory, file name and file extension information for the location of the Catalog.bin file

d. Updates “error” message in “MessageManager” module as necessary

VI. “MessageManager” (MM)

a. Stores “result” message
b. Stores “error” messages for each module (CM, SM, BM, QM, P)

c. Stores boolean variables indicating whether “error” messages are non-null

d. Located at the end of the composition chain of main modules

i. Allows objects located higher up the chain access to MM

ii. qm->sm->cm->mm->setResultMessage(“row inserted.”);

iii. sm->cm->mm->setErrorMessage(“Header failed to open”);

[image: image4]

[image: image5]

[image: image6]

[image: image7]

[image: image8]
UserInterface

QueryManager

BufferManager

StorageManager

CatalogManager

MessageManager

Block #3

Block #2

(“empty”)

Block #1

Buffer Pool

44

86

3

“Insert into Empty”

10

26

27

28

9

25

8

12

11

7

6

5

71

79

78

77

4

3

40

2

1

30

20

10

Hard Drive

Main Memory

…

3. insert ..

2. load partial ..

File Pages

3

12

21

44

99

18

17

-4

Block #3

Block #2

Block #1

Buffer Pool

36

77

45

“Flush, Load and Insert into Partial”

10

26

27

28

9

25

8

12

11

7

6

5

44

86

3

Hard Drive

Block #3

Block #2

(“empty”)

Block #1

Buffer Pool

44

86

3

“Load and Insert into Partial”

10

26

27

28

9

25

8

12

11

7

6

5

71

79

78

77

4

3

40

2

1

30

20

10

25

90

31

87

89

90

File Pages

1. load partial ..

insert ..

Main Memory

2. insert ..

…

…

BufferManager

BufferManager

insert ..

Block #3

Block #2

(“partial”)

Block #1

Buffer Pool

76

25

30

“Insert into Partial”

10

26

27

28

9

25

8

12

11

7

6

5

44

86

3

71

79

78

77

4

3

40

2

1

30

20

10

25

90

31

87

89

90

71

79

78

77

4

3

40

2

1

30

20

10

40

30

20

10

1. flush ..

31

Buffer Pool (bp)

Block #1

Block #2

Block #3

…

Block max#

…

…

…

…

BufferInfoTable (bit)

…

…

…

xyz_header

abc_header

abc

xyz

Table data

files

Header metadata files

Hard Drive

_1266583777.unknown

_1266583860.unknown

_1266583672.unknown

